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Objectives


The goal of the AIM-C program 
(1) Accelerate the insertion of new materials and processes 
(2) Evaluate the effects of material, processing, and design 

on the performance of composite structures 

(Funded by DARPA and managed by NavAir) 
AIM-C : Accelerated Insertion of Materials – Composites 

Our objective is to analyze 

• Environmental effects (temperature, moisture) 

• Durability (creep and fatigue life, residual strength)
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State of the Art in Composite Analysis 
No principal stresses or strains


- Composites are highly orthotropic and viscoelastic 

Involves numerous parameters 

yz
X, X’, Y, Y’, S


isotropic materials Composite materials


Smallest level of imperfection is at the fiber / matrix level 

Infinite combinations of parameters must be tested 

Ply failure 

Ex, E
τ
τ


y, E G,xy
τx, y, z, xy, xz,σ
σ
σ


z, G xz, Gyz 
Laminate failure 
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Analytical Models 

Strain Invariant Failure Theory (SIFT)

- Predicts initial and final failure of composite structures 

Micromechanics 
- Predicts 3-D ply properties and strain magnification factors 

Accelerated Testing Methodology (ATM) 
- Rapid generation of durability database as master curves 

Linear Cumulative Damage Law (LCD) 
- Life estimation under combined fatigue/creep loads 
- Residual strength prediction 
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Analysis Architecture 

Input/Output Durability Assessment Structure


ATM SIFT Analysis 
3-D FEA based analysis 
of complex composite 
laminates and structures 

Output Screen 

Input Screen 

Micro-
Mechanics 

Durability Prediction 

Inputs 

Outputs 
Long term strength 
Life estimation 

- Resin properties 
- Fiber properties 
- Volume fraction 
- etc.  
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Evaluation of NASA HSR Data 
- Mainly residual modulus and strength after thermal and mechanical load cycles 
- IM7/5250-4 and IM7/K3B 
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Strain Invariant Failure Theory (SIFT) 

dilatational    
J1 =ε1+ε2+ε3 

distortional 
2ε =[{(ε -ε )2+(ε -ε )vM 2 3 1 3

+(ε -ε )2}/2]1/2
1 2

3-D macro strains 3-D micro strains Strain invariants

due to mechanical at various locations in the resin 
and thermal loads in the fiber and resin
 and in the fiber 

+ 
compare
Micro thermal strains 

due to CTE mismatch Critical invariants
of fiber and resin 
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Final Failure Prediction Using MER 
Maximum Energy Retention (MER) monitors retained and dispersed 
strain energies during the progressive damage to predict the final failure 
(2002, Gosse) 

Intact state 

Dispersed Energy 

Stiffness 

90o J1 failure 

90o σ2ε2 

Assume Eeff = Eintact U /Uintact) 

0o J1 failure 

0o σ2ε2 

0o ef 
vM failure 

0o σ1ε1 

[0/90/0] 
Schematic of MER used in the Stanford software 

(1 - 0.5 dispersed
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Micromechanics Finite Element Models 
Cross-sectional view of Square Array Model Unit Cells 

continuous fiber composites 

Hexagonal Array Model


Predicts 3-D ply properties and strain magnification factors 
as functions of Vf, Ef, and Em. 
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Evaluation of Random Fiber Array 
Finite element model (Ha, 2003) 

Modulus	

* Vf = 0.60 
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Accelerated Testing Methodology 
Series of tests at elevated temperature 


Modulus 
Measurements 

Master Curve 

Constant Strain 
Rate Tests 

Static Strength 
Master Curve 

Fatigue Tests 
(S-N Curves) 

Master Curve 
Fatigue Strength 
Master Curves 

Time-Temperature 
Superposition 

Time-Temperature 
Superposition 

Time-Temperature 
Superposition 

Creep Strength 

Predictions for wide ranges of temperature and time to failure
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Time-Temperature Superposition (TTSP) 

Assumption: Same shape for any temperature = Master Curve 

T1T2T3 

Strength 
T3 > T2 > T1 T1 

T2 

T3 

Strength test range 

TTSP 

Log time to failure Log time to failure 

Shift factors 

0⇒ Master curve can be generated from the 
fragments of curves at different temperatures 

⇒ 

Tref T2 

T3 

o 

o 

o 

Curves can be superposed by horizontal shifts 

Accelerated evaluation of long term performance 

Temperature 
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Creep Life Prediction 
Linear Cumulative Damage Law (LCD) relates static and creep failures


Static loading Creep loading

stress stress stress


log time 

static MC 

creep MC 
time 

failure 

static MC 

time 

failure 

creep MC 

series of creep loads with increasing stress level. 
Using LCD, 

LCD 

∆t ∆t ∆t ∆t+ + +tc,σ1 tc,σ2 tc,σ3 tc,σ4 

tc,σs tc,σi 

σs 

σi 

σs 

∆ s,σs/n 

ts,σs 

creep life at σ 
tc,σ = f (ts,σ) 

Static (constant strain rate) loading considered as 

+ … = 1 

t = t
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Creep Life Predictions and Measurements 
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Creep life predictions agree with the creep test measurements
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Fatigue / Creep Life Prediction 
Creep and fatigue are related when rate dependence is considered


This allows


- Linear interpolation for arbitrary stress ratio (R=σmin/σmax) 

- Life prediction for combination of creep and fatigue loads using LCD


Stress

S


σmax 

Time to failure log tf 

Creep (R=1) 
Fatigue (R=0)
N=1 
N=102 

N=104 

At σ , R, and N 

Predicted life is 
tf,N,R =R×tf,R=1+ (1-R)×t

Stress 
σmax 

σmin Fatigue 0<R<1 

Creep R=1 

time 
Fatigue R=0 

log tf,N,R=0 log tf,R=1 

max

f,N,R=0 
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Fatigue / Creep Combined Load 
Linear Cumulative Damage (LCD) = Miner’s Rule


with respect to time only if correct frequencies are used 
t1 + t2 + t3 + t4 + … =1 ⇒ Require ATM

tf,1 tf,2 tf,3 tf,4


time 
[min] 

i ti tf,i ∆i 

1 105.5 106.4 0.11 
2 105.0 105.2 0.57 
3 106.0 1024 0.00 
4 105.6 1025 0.00 
sum 0.68 

Life = 1/ 0.68 = 1.5 
30 40 140 180 

-50oC 

ε = 1e-3 

ε = 1.5e-3 

0 

Applied strain 
Temperature 

1 2 3 4 

50oC 

Repeated 
10000 flights 

Example: Simplified flight load 

ATM 
& LCD 
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Residual Strength Prediction 

t
Linear Cumulative Damage (LCD) After a damage of λ


1 + t2 + t3 + … = 1
 λ + t1 + t2 + t3 + … = 1 tf,1 tf,2 tf,3 tf,1 tf,2 tf,3 
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Effects of Moisture 
Reversible effects 

Tg 

Irreversible effects 

Temperature-Moisture Superposition 

Teff = T + aM M, where aM = Moisture shift factor 

of interface failure 

CFRP [0] flexural strength 
(Miyano, 2001) 

irreversible 

reversible 

- reduced modulus 
- reduced strength 
- lower 
- swelling of the resin 

- fiber/matrix interface failure 
- ... 

(2002, Miyano and Sekine) 

Micromechanics analysis 
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Load Independent Degradation 
Separate the long-term degradation to 

Load-dependent degradation 

Load-independent degradation 

ATM 
Systematic prediction of 

load-dependent degradation 

Aging Tests 
Simplified tests without 

mechanical load 

log tf 

S factor 

T1 

T2 

combine 

Master curves from ATM Degradation factors from aging tests 
(Thermal stability models by Boeing) 

- Creep/fatigue failures 
- Due to applied or hygro-thermally induced stress 

- Assume no effect of applied loads 
- Chemical degradation due to oxidization, UV, etc. 
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Last ply failure stress for various laminates 
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Electronic Carpet Plot Output

Applied load Required thicknesses of various laminates under bi-axial static loads 
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Electronic Carpet Plot – Multiple Loads 
Required thicknesses of various laminates 
under multiple fatigue/creep loads 1. Pressure Load (RTD) 

N1 = 2 MPa-m tf = 20 years
12 

N2 = 1 MPa-m creep load 
N6 = 0 MPa-m 

10 

2. Landing Load (40C, 0.5%)
N1 = -2 MPa-m tf = 50000 minQuasi-isotropic

N2 = 


8 
0 MPa-m Nf = 50000 cycles25/50/25


N6 = 
0 MPa-m 
100% 0 plys 60/40/0 50/50/06 
80% 0 plys 10 to 15% reduction 3. Gust Load (RTD)
60% 0 plys 

N1 = 4 MPa-m tf = 100 min4 40% 0 plys 
N2 = 1 MPa-m Nf = 100 cycles20% 0 plys 

0% 0 plys N6 = 2 MPa-m 
2 Quasi isotropic (Pressure load plus axial and shear 

loads superposed) 
0


0 20 40 60 80 100


% 45 Plys 
Optimum layup for multiple loads are not obvious 
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Parameter Study
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Conclusions 

Accelerated Testing Methodology (ATM) allows rapid generation 
of durability database as master curves. 

Strain Invariant Failure Theory (SIFT) relates basic material 
durability database to the durability of composite laminates and 
structures 

ATM/SIFT combination provides framework for evaluating the 
effects of various parameters associated with material selection, 
processing, design, loads, and environmental conditions. 
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